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Abstract 

It is proved that Fermi fields can, in principle, be constructed in terms of Bose fields, 
without losing any of the physical properties of the Fermi fields such as, for example, 
Pauli's Principle. As an example, a Fermi field satisfying Dirac's equation is constructed 
in terms of Bose fields. Para-Fermi fields are constructed as well. Consequences" Physical 
theories can, in principle, be reformulated in such a way that Fermions and para-Fermions 
are described in termS of Bosons. 

1. Introduction 

The basic  a im of  the present  invest igat ion is to show, in principle,  tha t  all  
physical  theories tha t  use Fe rmi  q u a n t u m  fields can be re formula ted  using 
only  Bose fields. Both theories give the same physical  results. F o r  example,  
as is shown here, in a re formula ted  theory  (i.e. one constructed f rom Bosons 
bn ly)  Paul i ' s  pr inciple  is satisfied by the par t ic les  which in the usual  theory  
were in t roduced  as Fermions .  These results are extended to parastat ist ics.w 

t Present address. 
~: Holder of a fellowship of the Centro Latinoamericano de Fisica. 
w In the present paper parastatistics refers to systems described in terms of parafields 

(Greenberg & Messiah, 1965) in contraposition to the analysis of para-symmetries of the 
wave function (Messiah & Greenberg, 1964). 

Copyright �9 1973 Plenum Publishing Company Limited. No part of this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo- 
copying, microfilming, recording or otherwise, without written permission of Plenum Publishing Company 
Limited. 
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In Kademova (1970) the above results were obtained in an idealised world 
with only one Fermi (or para-Fermi) particle. The results were extended in 
Kademova & Kglnay (1970) for the~again idealised--case of a finite 
number of Fermions (or para-Fermions). In our present work we shall 
generalise them to Fermi (or para-Fermi) fields. 

In Section 2 we summarise our results concerning Fermi fields only. 
Parastatistics is briefly reviewed in Section 3. In Sections 4 and 5 we state 
and prove the theorems (including the extension to parastatistics). As an 
example a Fermi field satisfying Dirac equation is constructed in the Appen- 
dix. In order to explain more easily the physical ideas we do not pretend 
mathematical rigor in the present paper. The transformation properties of 
the Fermi fields constructed by means of Bose ones and their observables 
are discussed and found not to be in contradiction with the standard theories 
(K~llnay & Kademova, to be submitted for publication). 

2. Quantum Theory of Fermions Constructed from Bosons-- 
Summary of Results 

2.1. Definitions 
Let us choose two fixed natural numbers R and T and two arbitrary sets 

of complex valued functions upon(x) and V,r,(Z) such that each set is 
orthonormal and complete: 

f g=l 

R 
~ u*~c(x) uo~c,(x' ) = 3r 6(x - x') (2.1.1b) 

~,=1 p=l  

p , ~ =  1,2 . . . .  ,R;?= 1,2, . . .  

f d 3 ZV*rr V,,r,r = fir ~' 6rr' (2.1.2a) 
~ 1  

T 
~ v~*r~(z) V~r~,(z') = 6~, 6(z - z') (2.1.2b) 

!r=l ~ 1  

-c,~ = 1 , 2 , . . . , T ; F =  1,2, . . .  

To each natural number n we put into one-to-one correspondence a pair 
of natural numbers (p., y.) in the following way: 

n = R ( ? . -  1) + p., n =  1,2,3 . . . .  , 7.-- 1,2,3 . . . . .  p . - -  1,2 . . . . .  R 
(2.1.3) 

This means that in the arithmetic of natural numbers p. - 1 is the remainder 
and ~. - 1 is the quotient of the division of n - 1 by R. This shows that 
when n is fixed then the numbers p. and ~. are unique. Similarly to each 
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natural number i apair  of natural numbers (% F~) is put into correspondence 
as follows: 

i = T ( F l - 1 ) + t ~ ,  i =  1 ,2 ,3 , . . . ,  F l - -  1,2,3 . . . . .  ti = 1,2 . . . .  , T  

(2.1.4b) 

Given a natural number r, we put it into one-to-one correspondence with 
a sequence, 

r ~--~ ~x',/~2',/~3", �9 �9 .), ttk' = 0, 1, r , k =  1 ,2 ,3 , . . .  (2.1.5a) 

in such a way that 

r = ~ /~k'2k-I + 1 (2.1.5b) 
k=l 

This is the same as to impose that in binary arithmetic the number r - 1 be 
written as 

~max ~max -1 " ' "  ]23r ~2r ~ l r  

+ 
We define a matrix Fr with the following complex elements 

t 

~ : : , ( ~ , ~ , x ' ) =  ~ ( -1 )  ~L"' (1 ' * - m ) v,,~,~ (z) 
l ,r=l 

x up+2,_ ~ ~+2,_~ :(x) u* ,,:,(x') (2.1.6) 
+ 

Further we denote by a the Hermitian conjugate of a and by c* the complex 
conjugate of the number c e C. The sum convention is nowhere used. 

2.2. The Results for Fermi-Dirac StiTtistics 

Let us start from a Bose fieldt 

+ 
bcl(x), br ~ = 1, 2 . . . .  , R, x ~ R 3 (2.2.1) 

BYt &l we denote the Fock space of this Bose field, ~ t  denotes the n- 
particle subspace. The single particle space &l~ is spanned by the vectors~: 

ix , ()~1 = ~ l(x)10)~l (2.2.2) 

10) *t is the vacuum of the Bose system: 

b~l(x)lo) ~1 = o, v x, ~ (2.2.3) 

t The upper index 1 is introduced here for self-consistency with the notation of the 
following Sections, It means para-statistics of order one, i.e. ordinary statistics. 

:~ I)ff I will denote an n-particle Bose as belonging to g,1. When confusion does not arise 
the lower index n will be omitted. 
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We want to construct Fermi fieldst 

f~l(z),f~l(z), r = 1,2 . . . . .  T, z e R a 

as well as their Fock space ~ l .  
Let us define 

. f f " f g ( z ) =  d ~x d ~x '  Y. 
~,r 

and:~ 

+ + 
F~r162 x, x') bci(x) bb(x' ) (2.2.4) 

f R + IO) ~ =  d3x  • ullr ~* (2.2.5) 

I t  is proved in Section 5 that in the single particle Bose subspace 

~x l  = ~ l  (2.2.6) 
+ 

the operatorsfr  andfr are Fermi creation and annihilation operators 
and 10> arl is their vacuum state. 

Given a Fermi state [~,>ar* a complex valued function &*(x) exists such 
that  

I~'>ar' = f dax ~ g~O(x)b,*(x)lO> e:  (2.2.7) 
r 

The standard Fermi commutat ion rules are satisfied on 1~) arl 

[f~'(z),f'~,(z')J+l~>ar' = 6r 6(z - z')l~,>ar' (2.2.8) 

[f,l(z),fb(z')]+l~>~' = b>:(z),)~,(z')]+l~O> ar* = o (2.2.8b) 

V I~>ar* e ~i = ~i* 

Let us consider the n-particle Bose 

Ixx, Cx ; x2, r ; . - - ; x , ,  r = (n!) -*/2 g~,(x,) g~2(x2).., b~.(x,)]0> e~' (2.2.9a) 

and Fermi  

Iz,, ~, ;z2, r ; - . .  ; z,, r = (n !)-*/2J~,(zl))~2(z2)...)g(z,)10>ar* (2.2.9b) 

states. The n-particle Fermi state is explicitly constructed as 

[zl, ~x;z2, ~2 ; . . .  ;z,, ~,>ari =(n! )  -1/z g E ( -1)  e 
1 ~11 < 1 2 < ' " <  fn< eo P 

x f l  v*,,r,~e,,(z,) I d a x  ~, u o . , . r162 e~ (2.2.10) 
h=l  r 1+ h~1218-1 l+h~ l  21h-i 

t The upper index 1 is introduced here for self-consistency with the notation of the 
following Sections. It means para-statistics of order one, i.e. ordinary statistics. 

:~ By ])art we denote the Fermi states. 
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where (-1) P is the. parity of the permutationt 

P = il i2 i, 
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Equation (2.2.10) is manifestly antisymmetric under interchange o f  Fermi 
particles and, as a consequence, Pauli" s principle is satisfied. This is even more 
transparent in the two Fermi particle states, 

[zx, ~x ; z2, ~2) a'' = 2 -1/2 ~ [v,,r,~(z)* v,,,r,,,,(z* ') - * ' * v~,,~,,,,(*)] v,,~,~,(z ) 

f R + t • d3x E uo,+,,-l+;,-l~,+;-l+;,-,dx)b,a(x)lO) ~ 

(2.2.11) 
The one Fermi particle states takes the form 

f " + , 
= V,,r,r d 3 x  ~ Up,+2Hy,+,Hr (2.2.t2) 

l = l  s  

The proofs of all the results stated here are particular cases of the theorems 
of Section 5 which refer to the more general case of parastatistics. 

3. A Short Review o f  Parastatistics~ 
+ 

Consider a numerable set of operators b,, br satisfying the following 
commutation relations: 

+ + + 

[�89 bs]+, b,]_ = 6~, b, (3.1 a) 
+ + + 

[�89 b~]+,b,]_ = O, V r,s, t (3.1b) 

Further on we will be referring to them as to the para-Bose algebra 
generators. 

All the irreducible representations of the commutation relations (3. t) in 
Fock spaces with unique vacuum state are singled out by the conditions 

b,"10) ~' = 0, V r (3.2) 
+ q 

b,~bs"]0) ~ =q3,~10) ~', V r ,s  (3.3) 

where q is a positive integer (order of parastatistics) labelling the irreducible 
representations of (3.1). The index q to the para-Bose algebra generators 

+ 

fixes the representation. The generators b ,  b~ within a fixed representation 
have an upper index q. 

t We stress that n-particle Fermi states are realised as single particle Bose states. 
Cf. equation (2.2.6). 

:l: See Green, 1953; Greenberg & Messiah, 1965. 
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+ 
Similarly, byf~,ft  we denote the numerable set of  creation and annihila- 

tion operators generating a para-Fermi algebra, defined through the 
commutation relations 

+ + + 

[�89 = 6jkf~ (3.4a) 
+ § + 

[�89 = 0, V i,j, k (3.4b) 

The irreducible representations of the para-Fermi algebra in Fock 
spaces with unique vacuum state are singled out by the conditions 

A' I0)  ~" = 0, V i (3.5) 

Ap~'I0> ""  = p  a d 0 > " ,  v i,j (3.6) 

p being a positive integer (order of  parastatistics) labelling the irreducible 
+ 

representations. As before, the generatorsf~,f~ within a fixed representation 
have an upper index p. 

Fermi (Bose) algebra is a particular case from the para-Fermi (resp. 
para-Bose) algebra with order of  parastatistics 1. 

The Fock space &* of a para-Bose algebra of  order q is spanned by 
n-particles kets (n = 0,1,2 . . . .  ) 

q+ + + 
lrl, r2 . . . . .  r.> ~~ = C a b ~  b ,~ .  �9 �9 b~.10)  ~ '  (3.7a) 

similarly the Fock space ~ P  of a para-Fermi algebra of order p is spanned 
by t  

[i~,/2 . . . . .  i , ) "  = C~'?r ,  f r2 . .  ")'~', [ 0) ~ '  (3.7b) 

4. Second Quantisation of Numerable Para-Fermi Systems 
with Arbitrary Order of Parastatistics 

+1  Theorem 4.1: The infinite set of matrices F~, F~ 1, i = 1, 2, 3 . . . . .  defined 
through equations 

t 

(/~ll),s =- (--1)k~1 u*'(l - -  ~ t s )~p t r ,  p / ,+l  f i  ~,ulr, p Is ( 4 . 1 a )  
1=1 
i r  

t 

(F,1),. = (-1)k=~' u;(1 -p{)6u,.+l..,, ~ 6.,,,u ,, (4.1b) 

forms an irreducible representation of a Fermi algebra, 
+ 

([V, 1, V~,]+),~ = 6,. 6u, (4.2a) 

' ' 
([F~, F~,]+),s = 0 (4.2b) 

Proof: It follows from straightforward computation of  the anticom- 
mutators. It is easier to consider separately the cases i = i', i < i' and i > i'~ [] 

i" C ~ and C ~p are normalisation constants. Their further indices are omitted. See 
Greenberg & Messiah, 1965. A change in the ordering of the creation operators in 
equations (3.9) lead, in principle, to different states. 
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Remarks: (1) The representation (4.1) of the Fermi algebra is irreducible. 
(2) Notice the smooth generalisation from the Proposition stated in 
Kademova & K~ilnay (1970) for the finite case. The only difference [if 
equation (4.1) is restricted to finite 2 ~ | 2" matrices, as in the Reference] is 

a change of a phase factor (-1) ~ ~r The phase factor used here can also be 
used for the finite case, but the opposite is not true. 

Note added in proof: 
If the matrices (F~l)rs are rewritten as (F~a)u~,,~,...; , , ~ , . . .  then, for the 

finite case, they coincide with the Fermi matrices given by Jordan, P. and 
Wigner, E. (1928), Zeitschrift fiir Physik, 47, 631, in their Eq. (69) which 
was not previously known to us. 

Theorem 4.2: Let us define 
i r + 

f~ = ~ (:-1) k~' "~ (1 - #,')~[b~+2H,b,q]+ (4.3a) 
r = l  

i r + 

f~ = ~ (_l)k~ ~ u~ (1 - #,')�89 i =  1,2,3, , . .  (4.3b) 
r = l  

+ 

Then the algebra generated by f~ and f~ is a realisation of the para-Fermi 
algebra in terms of Bose operators. 

Proof." Using (4.1), equations (4.3) can be rewritten as 

J~= ~ (/~ll)~�89 (4.4a) 
r,s=l 

f ,=  (4.4b) 
r , S = l  

The proof immediately follows from a straightforward generalisation of the 
Theorem given in Kademova (1970) by taking into account Theorem 4.1. [] 

Note: (1) The formulae of this Section can also be used for the finite case 
by restricting i = 1, 2 . . . .  , n and r, s = 1, 2 . . . . .  2" [cf. Kademova & K~ilnay 
(1970)]. (2) Further in this Section we put q = 1 in equations (4.3) so that, 
in what follows a realisation of a para-Fermi algebra in terms of Bose operators 
will be considered. Then, due to the particular commutation relations of the 
Bose operators, the Jordan product �89 ]§ can be replaced by the ordinary 
operator product in equations (4.3) and (4.4): 

t 

(-1) k=l (1 - / t , ' )  b~,+2,-~ b)  (4.5a) 
r = l  

t 

f l  = ~ (--1) k~l /~t~r ( 1 --#tr) brlblr+2 l-l, i :  1,2,3 . . . .  ( 4 . 5 b )  
r=l 
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~ =  ~ (A1 ) , .~b , .ab f l  - (4.6a) 
r ,s~ l  

f~ = ~ (F~)~l),~ b, ~ (4.6b) 

According to the purpose to be used, formulae (4.5) or their equivalents 
(4.6) are more suitable. 

Theorem 4.3: Given a Bose algebra (q = 1) with a numerable set of 

generators/~t, b~ (r = 1,2,3 . . . .  ), the subspace ~v 1 of the p-particle Bose 
states is a Fock space of the para-Fermi algebra with a numerable number 

+ 
of generatorsffl, f v (i = 1,2, 3 .... ), where p is the order of parastatistics. 

The vectort 
10) ~" = fP, 0, 0 , . . . ) ~  (4.7) 

is a unique vacuum state of the para-Fermi operators. 

Remark: The irreducible representation of the para-Fermi algebra is 
fixed by p and therefore we identify 

+ I =~v[d?~i 

Proof: The equations (4.5) imply that 
t 

+ = - -  1 /2  1[2  
. . . .  

r = l  

X 10~1, �9 . . ,  ~r_l,O~r - -  1 ,  0~ r+ l ,  . . . ,  0 ~ r + 2 1 - l _ 1 ,  ~r+21-1 -~  1 ,  ~ r + 2 / - 1 + 1 ,  . . . ) . ~ 1  

1 

A[~l, 0~2, ~a . . . .  >~I = ~ (-1)kxl"u~'( 1 - #,')(c~,+2,-1)'/2( c~, + 1/I/2 
r = l  

x l~l , . . . ,  ~-1, ~r + 1, ~,+a . . . .  , O~r+2f-l_l, 0~r+2t-1 - -  1, ~r+21-1+1 . . . .  ).~1 

(4.9a) 

so that 
f~lp,0, 0,0 . . . .  )~ '  =0 ,  V i 

and 

f l~[p ,  0, 0,0 . . . .  )~1 = 31sp[p,O,O,O . . . .  )~ ,  V i,j (4.11) 

This completes the proof since equations (4.10) and (4.11) are formally the 
same as equations (3.5) and (3.6).~ [] 

V i  

(4.9b) 

(4.10) 

"t" See notation at the end of Section 3. 
J; The uniqueness of the vacuum follows from equations (3.5) and (4.5) and from 

Remark 1 to Theorem 4.1. 
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An abbreviated notation of the basis of ~1 ~ is 

l l>f '= la , , , a2 , ,a~ , , . . . )~ ' ,  l = 1 , 2 , 3  . . . .  

17 

(4.12) 

Lemma: The following relations take place 

I ! 

+ k~l uk t, 1 f ,  l l ) f '  = ( - l )  - , - m ' ) l l +  2 ' - 1 ) f  ~ (4 .13a)  

I / /~-21-1 

f ,  l l ) f '  = ( - 1 ) : - '  O ( l  - 2 , - , ) ( I  - # ~ - 2 ' - ' ) [ 1  - 2 , - , ) f '  

l = 1,2, 3 . . . .  (4.13b) 

Proof: The proof follows immediately from equations (4.9). For instance, 
the proof of the second equation is based on the fact that equation (4.9b) 
leads to f~II)~ 1 = 0 if l < 2 ~-t. This explains the factor 0 ( l -  21-t), where 
O(z) = 0 if z < 0, O(z) = 1 if z > 0. [] 

Theorem 4.4: The subspace & l  of the one-particle Bose states is a Fock 
space of the Fermi algebra generated by the creation and annihilation 

+ 
opera torsf ,  f~ defined by equations (4.5) [or (4.6)]. 

Note: As this theorem is a crucial one for the physically most interesting 
case (description of pure Fermi systems in terms of Bose entities) we shall 
give three independent proofs of it. 

We must prove that the operators (4.5) or, equivalently, (4.6) satisfy 

[f~,~]+[~)~ = ~ [ ~ ) f ~  (4.14a) 
and 

[J~,j~]+l~b)~' = 0, V i,j, V I~k)f t E ~ (4.14b) 

First proof: It is well known that the para-Fermi algebra of order 1 is 
the Fermi algebra. Then, putting p = 1 in Theorem 4.3 the proof is 
completed. [] 

Secondproofi" Equations (4.6) imply 

so that 

(4.15) 

~,Z]+IV,>f'  = ([F,,PA+),sLb, IV,>f', Vlr  E a :  (4.16) 

Then equation (4.14a) follows from equations (4.2a). Equation (4.14b) is 
proved in the same way. [] 

2 
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Third proof." We shall prove equations (4.14) on each ket belonging to the 
basis [l>~ t using the previous Lemma and the properties of the numbers/l~' 
introduced in equations (2.1.5). From equations (4.13) we deduce, 

I 
+ + ~ Ut+21-1 . k l ( 1  f jAIl>~'  = (--1)*-' ' +k=~' - U~+z'-')(l - #})[l + 2 '-~ + 2J-'>~ a 

(4.17a) 
l fll.F2J_l_21-1 q- } 

f t~l l>~t  = (_l)e~ ~ , ,=, uk' 0(1 + 2 J-~ - 2'-')(1 - bt~') 

x (1 - kt~+z~-'-2'-')ll + 2 J-~ - 2'-x>~ ' (4.17b) 

max(t,/) 1-21-1 

f f, = (-1) k-'+~'=,'a)"k 0 ( l_  2H)(1 _#~-2,-,) 

x (1 - ltS-2'-*)ll + 2 J- '  - 2'-~>~ ' (4.17c) 

and 

~f~ll>~ * = 0(l - 2'-*)(1 - #~-2'-*)1I }~* (4.17d) 

Using these results after tedious but straightforward calculations one gets 
equations (4.14). [] 

5. Second Quantisation o f  Para-Fermi Fields 

+ 1  Theorem 5.1: Let us call Fr (z) the matrices whose elements of indices 

~, x; ~', x' are the +1 Fcw(z,x,x ) introduced in equation (2.1.6). Then the 
+ . . . .  + 

matrices Fr and their Hermman conjugates Fr generate an irreducible 
representation of  Fermi algebra.. 

Proof: Using equations (4.1) one can rewrite the matrix elements of  
+ 1 Fr (z) as follows, 

+ s + )(F:),, (5.1) 
l,r,s=l 

One completes the proof using Theorem 4.1 (as well as its first Remark), 
equations (2.1.1) and (2.1.2). [] 

Lemma: Let us assume that upr~(x) and V~rr satisfy, respectively, 
equations (2.1.1) and (2.1.2). Given the fields b ~(x) andre(z) (or the operators 
b,,f,) one can construct operators b,, f~ (resp. fields be(x), fr such that 
the equations 

/ , , ( x )  = * + up, r,~(x) b, (5.2a) 
r=O 
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b , =  d 3 x ~ .  
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+ 

uo, ~, r b ~(x), C = 1,2 . . . . .  R, x ~ R 3, 

r = 1,2, 3 , . . .  (5.2b) 

= V~,r,e(z)f~ (5.3a) 
l=O 

f i  = J d 3 z ~ Vnr,r ~ = 1,2 . . . .  , T, z 6 R 3, i = 1,2, 3, . .o 

(5.3b) 

as well as their Hermitian conjugates are right. Then: 

(i) bg(x) is a para-Bose field i f f  the b, are para-Bose operators. The 
vacuum state 10) ~" is the same for both and b~(x) and b, have the 
same order of  parastatistics q. 

(ii) f~(z) is a para-Fermi field lff the f ,  are para-Fermi operators. The 
vacuum state 10) ~p is the same for both and f~(z) and f~ have the 
same order of parastatistics p. 

Proof: Use the notions of  parastatistics reviewed in Section 3 as well as 
equations (2.1.1) and (2.1.2). [] 

Theorem 5.2: Let us define 

f Y " fr d a 3x' E 
C,C'=I 

+1 + Fr x, x') �89 b~,(x')]+ (5.4a) 

f f R t + q q r f~(z) = d 3 x  d 3 x  ' E f~r189 (x), br )]+, 

= l, 2,..., T (5.4b) 

where b{q(x) is a para-Bose field of  order q and/~c{,(z,x,x') is defined 

through equation (2.1.6). Then the algebra generated byj~(z) andf~(z) is a 
+ 

realisation of  a para-Fermi algebra in terms of  para-Bose fields be(x), 

be(x), i.e. thef~(z),j)~(z) are para-Fermi fields.t 

First proof." It follows immediately from the Theorem given in Kademova 
(1970), taking into account Theorem 5.1. [] 

Second proof." It follows from the last Lemma and from Theorem 4.2 

t Notice that + 

[F~.,(z,x.x')]* = F~,dz, x',x). 
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For simplicity the proof is sketched in four steps: 

(1) Let para-Bose fields be(x) (x ~ R3,~ = 1,2 .... ,R) be given. 
(2) Using them, we define through equation (5.2b) the para-Bose 

operators b, (r = 1,2,3 .. . .  ). 
(3) A set of  para-Fermi operators f~ (i = 1,2, 3,...) is realised using the 

para-Bose operators b, (r = 1,2, 3 . . . .  ) (see Section 4). 
(4) Finally we define through equation (5.3a) the para-Fermi fields 

f~(z) (z e R a, ~ = 1,2,... T). This gives the explicit realisation (5.4) of  
the para-Fermi fieldsfr through the para-Bose field b~(x). 

+ 
Theorem 5.3: Given a Bose algebra (q = 1) with the generators b~(x), 

b~l(x) (whose number is equal to the cardinal number of the continuum), 
x E R 3, ~ = 1, 2 . . . . .  R, then in the p-particle Bose subspace ~p~ a Fock 
representation of order of parastatistics p of the para-Fermi algebra 

+ 
generated by the fieldsJ~(z),fe(z) [defined by equations (5.4)], whose number 
also equals the cardinal number of the continuum, is realised, i.e. 

=fe'(z)[O>~, fe(z)]O>~' =fe'(z)]O>~', v I~,), ~' E & l  
(5.5) 

The vacuum state is 

t i l ,g2 . . . . .  g n ~ l  

+ + -I- P • uu  q,(x,)b~,(x,) b~2(x2) �9 �9 �9 b~,,(xp)lO)~ (5.6) 

Remark: For q = 1 formulae (5.4) reduces to 

+ f / R + +. f~(z)= dax d3x ' ~ ,  F~w(z,x,x')b~l(x)b~,(x ') 
~ , U = I  

(5.7a) 

A(z)=f a3x f d3x' 
~,~'=1 

F~,,(z, x, x') ~?(~) bb(x') (5.7b) 

Pro@" It follows from Theorem 5.2 and from the last Lemma. To obtain 
equations (5.7) one must prove that 

R 

f a ~ x Z F~dz, x, x) = o (5.s) 

and to use equations (5.4) and (2.1.1a). [] 

Corollary 1. Given an arbitrary state 1r of a para-Fermi field of order 
of parastatistics p, a complex valued function 

g L ,  ..... ~,(xl, x2 . . . . .  x,) 
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exists such that this state can be realised as 
R 

Xp) I r  Y~ g,,,~, ..... cp(xl, x2 . . . . .  

+1 +I +1 ~t  • br b~,(x:) �9 �9 �9 br (5.9) 

Corollary 2. The results of Section 2.2 follow. 

Proof." P u t p  = 1 in Theorem 5.3 and in Corollary 1 (Fermi statistics is a 
particular case of  the para-Fermi one with p = 1). To obtain equations 
(2.2.11) and (2.2.12) use equations (5.4) and (5.5). Then equations (2.2.10) 
can be proved by induction. [] 

6. Discussion 

In the present paper we have constructed an arbitrary para-Fermi field 
in terms of para-Bose fields. In particular the Fermi fields are realised 
through Bosons. Their Fock space is the single particle Bose subspace. 

What concerns the observables, the equation of motion and the trans- 
formation properties of Fermi systems, it will be shown elsewhere (K~ilnay & 
Kademova, to be submitted for publication) that by introducing classical 
fields with convenient properties, the properties of  all Fermi entities realised 
in terms of  Bose entities coincide with those of  the theory of Fermi systems. 
For  example, the usual connection between spin and statistics can be 
achieved. In the present paper we only advance in the Appendix an example 
concerning the Hamiltonian: we show that a Bose Hamiltonian can be 
easily constructed such that the Fermi field (realised in terms of  Bosons) 
evolves according to the Dirac equation. 

We do not proclaim the naive picture that the Fermions are made up of  
two Bosons; we construct the complete Fermi Fock space on the single 
particle Bose subspace. This means that i f  a suitable Bose system exists, 
its single particle states can be observed as Fermi states. Further, the more 
Bose particle states span Fock spaces of higher order ofpara-Fermi statistics 
and therefore they could be perhaps observed as para-Fermions.t  I f  para- 
Fermions cannot presently be observed one can think that the energy needed 
to produce multi-Bose states (of the Bosons considered) is too high. 

As regards the commutation relations between the Fermi field and the 
Bose field through which it is expressed (if such Bosons exist) one finds that 
in the single particle Bose subspace (i.e. in the complete Fermi Fock space) 
the commutators have zero matrix elements as could be desired. However, 
when considering the physical meaning of such commutators, care should 
be taken in order not to count twice one and the same entity: the set of  all 
para-Fermi states is the same as the set of  all Bose states. 

t The Hamiltonian of the Fermi (para-Fermi) system in terms of Bosons is expressed 
in bilinear combinations of Bose creation and annihilation operators [see equations (5.7)], 
this conserves the number of Bosons and does not lead to a change of statistics. 
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Let us point out that expansions of pairs of Fermi operators (Beliav & 
Zelevinsky, 1962; Jansen et al., 1971 ; Marumori et ak, 1964; Marshalek, 
1971) and expansions of odd numbers of Fermi operators by means of 
Bose operators plus a Fermi operator (Banville & Simard, 1970; Shou 
Yung Li et al., 1971; Simard, 1967, 1969; Yamamura, 1965) have been 
studied and used.t The present approach has no relation with these attempts 
since our construction allows to express even a single Fermion through only 
Bosons. Skyrme (1958, 1961a, 1961b) considered specific models of Bose 
systems and found that some of their states were Fermi-like; however, they 
were obtained after some limiting operations and the existence of the limit 
(i.e. the existence of the Fermi-like operators) was left open. Streater & 
Wilde (1970) started from Skirme's model and constructed non-Fock 
representations of the canonical commutation relations for a model scalar 
field theory in two-dimensional space-time; charged fields (with continuous 
values of the charge) were constructed such that there exist sectors in which 
Fermi, Bose, non-Fermi and non-Bose commutation relations hold. How- 
ever, there are not any 'two Fermi particle states' ]~1,0~2)~ ~ (with ~2 ~ cq) 
because such states are completely described in the 'one Fermi particle 
states' [0c 1 + ~2)~ ~. Our approach refers to general systems (not only to 
specific models) and to Fock representations; Skirme's limiting process is 
not used and there is no difficulty (as mentioned above) with any multi- 
Fermi (or para-Fermi) particle states: different Fermi (or para-Fermi) 
particle kets are clearly distinguished with the exception of those which (as 
usual) are represented by a zero vector because Pauli's Principle (and its 
generalisations) are satisfied. 

Let us mention too that expansions of Bose operators in terms of Fermi 
operators were also known, long ago, in connection with the neutrino 
theory of light (Jordan, 1935, 1936a, b, c, 1937a, b; Pryce, 1938). Recently 
a neutrino theory of light has been constructed (Green, 1970) taking the 
neutrino as a para-Fermion of order two and constructing the photon from 
it. In relation to these programs (opposite to ours, we start from Bosons), 
see also Penney (1965a) who pointed out some difficulties for the finite case. 

These procedures of realising Bosons through Fermions and vice versa 
have their analogues in the c-number theory where one can construct 
tensors from spinors as well as describe, by means of tensors, entities (as 
the electron and the neutrino) which conventionally are described by means 
of spinors (Whittaker, 1936; Ruse, 19365; Penney, 1965b). Moreover, 
Whittaker (1936) proved that the calculus of relativistic spinors is included 
in the calculus of tensors. On the other hand the realisations of para-Fermi 
variables in terms of Bose ones can be retrieved, to a certain extent, in the 
classical limit (K~ilnay, 1972). 

t A. O. Barut in the recent preprint IC/72/114 Fermion States ofa Boson FieM(Inter- 
national Centre for Theoretical Physics, Trieste, September 1972) uses a similar creation 
operator c + to obtain a spinor field as a linear combination of products of Bosefields and 
c +. His work is related to the Streater and Wilde (1970) and not to ours. 

:~ We are indebted to Prof. A. Carrefio for calling our attention to Ruse's paper. 



F E R M I O N S  C O N S T R U C T E D  F R O M  BOSONS 23 

In a previous paper (Kademova & K,ilnay, 1970), devoted to the con- 
struetion of Fermi (and para-Fermi) creation and annihilation operators in 
terms of  Bose ones for the finite case, it was stated that because of  the 
existence of such a construction "... a possibility is given for reformulating 
physical theories in equivalent ones without Fermions (and para-Fermions). 
The oM and the reformulated theories wouM be physically indistinguishable'. 
In the present paper, we proved that for the more realistic case of  fields 
the above-mentioned possibility is right as regards (i) the algebra of  the 
operators and (ii) the state vector space. What remains is to see that the 
same happens with regard to observables, time evolution and transforma- 
tion properties, which will be shown by K~ilnay & Kademova (to be 
submitted for publication). 
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APPENDIX 

Dirac" s Equation 
+ 

Let us consider the field fcJ(z), f~l(z) (z E R 3, ~ = 1,2,3,4 = T) of  the 
quantum relativistic electron. Its evolution in time must be consistent 
with Dirac's equation. As is well known, this is achieved in the standard 
quantum field theory of  Fermi systems (see e.g. Gasiorowicz, 1967) by 
using the Hamiltonian 

Ha~(fa,f 1) = dSyf  ~i(y)(-iVy.~ + mp)~,f l , (y)  (A.1) 

and by imposing 

df  r = i [H~, f  ,~(z)]_ (A.2) 

If  we realise the Dirac field through equation (5.1) then the Hamiltonian 

Ha,( f l , f  ~) is expressed in terms of Bose operators 

+ y f f f f �9 . + Ha~(b,b)= dSz dSx dSx ' dSx " dSx ~" ~ ~.. Fe~v(z,x,x'  ) 
r  ~, U , ~ " , ~ ' = I  

m n 1 1 t 1 tr 1 • (-iVy. ~ + rot),,, Fr + + o,,r ,x  )b~(x)br162 )b~,(x ~) (A.3) 

of  a Bose system up to the term O(b~, b ~) which vanishes in the single particle 

Bose subspace ( r 1 6 2  ~ = 0, V 1r ~ E ~ ,~) .  
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The equation of motion for the field f~a(z) computed using the 
Harniltonian H~) 

af e,(z)/atl~O ) f  ~ = i [ H ~ , f  r (z)]_ I~ )~ '  (A.4) 

coincides with the Dirac 's  equation. 
A procedure  like the one shown here for  Dirac 's  equation can be used for  

any other  equation o f  mot ion  o f  a Fermi system. It  has the advantage that  
it is very simple to construct  Hamil tonians like H a, but  it always conducts  
to non-usual  Bose Hamiltonians.  However,  in K~lnay & Mac  Cotr ina 
(to be submitted for  publication) it will be shown that  such unusual 
Hamil tonians  are equivalents (as regards the equations o f  mot ion  o f  the 
Fermi systems) to more  standard Bose Hamiltonians.  
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